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PREFACE

This study developed into a report of two volumes dealing with soil-
structure interaction models. Volume I presents a Pasternak Base model and
its use for design of hydrotechnical structures. Solutions are given for a
variety of plates with loadings that are common with structures designed by
the Corps of Engineers. The Pasternak foundation model is labeled a two-
parameter model since two independent parameters control the behavior of the
model. The two parameters are dependent on the physical properties of the
foundation.

Volume II discusses criteria for selecting suitable foundation models.
It presents thoughts on different procedures for choosing the independent
parameters for any soil-structure interaction model.

Dr. Arnold D. Kerr, P.E., Wilmington, Delaware, prepared the report
under Contract No. DACW 39-83-M-1533. The work in producing this report was
accomplished with funds provided to the US Army Engineer Waterways Experiment
Station (WES), Vicksburg, Miss., by the Civil Works Research and Development
Program of the Office, Chief of Engineers (OCE), under the Soil-Structure In-
teraction (SSI) Studies Project of the Structural Engineering Research Program
Work Unit.

Dr. N. Radhakrishnan, Chief, Automation Technology Center (ATC), coor-
dinated and provided objectives for the work. Dr. Robert L. Hall, Research
Group, Scientific and Engineering Application Division, ATC, monitored the
work and Mr. Donald R. Dressler was the point of contact in OCE.

Commanders and Directors of WES during the research and publication of

this report were COL Tilford C. Creel, CE, and COL Robert C. Lee, CE. Techni-

cal Director was Mr. F. R. Brown.
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APPLICATION OF PASTERNAK MODEL TO SOME SOIL-STRUCTURE INTERACTION PROBLEMS

SOLUTIONS FOR PLATES CONTINUOUSLY SUPPORTED*
ON A PASTERNAK BASE

PART I: INTRODUCTION

Background

1. Hydrotechnical structure design plate problems are the basis for
this study, and their solutions are presented and discussed. The analysis of
continuously supported structures (for example, beams, plates, and shells)

requires the inclusions of the foundation response. The simplest representa-

tion of the foundation response was suggested in 1867 by E. Winkler,l when he
assumed that the contact pressure and the deflection at a point on the base
surface are proportional. Thus, for a two-dimensional plane surface repre-

sented by the x,y coordinate system, the response expression is

p(x,y) = k w(x,y) (1)

where k , the proportionality coefficient, is often referred to as the foun-
dation modulus.

2. This simple model, although useful for many structural and geotech-
nical engineering analyses, exhibits shortcomings, especially along the '"free"
boundaries of the structure. The situation created a need for the development

of more accurate pressure-displacement
:7<TP relations. A number of these models were
™S discussed by the author2 in 1964 and more
jiasnannnniannnanannnaialnnann 1] G recently by A. P. S. Selvadurai.3

k 3. At present there is general

4 .
agreement that the Pasternak foundation

Figure 1 model, shown in Figure 1,*% is the next

* Research supported by the US Army Engineer Waterways Experiment Station,
Vicksburg, Miss. 39180.

*%* The Pasternak foundation model, consisting of a shearing layer and a
spring layer, was introduced by the author in 1964 to facilitate the deriva-
tions. The original model presented by Pasternak (1954) does not contain a
shearing '"layer'"; the derivation presented is of questionable validity but
the obtained response expression is correct.

3
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order generalization of the Winkler model. 1Its response expression is

‘ p(x,y) = k w(x,y) - G Vzw(an) (2)

where V2 = (32/8)(2 + az/ayz) is the Laplace operator.
4. A continuously supported thin elastic plate (Figure 2) is governed

by the partial differential equation

D v + p(x,y) = a(x,y) (3)
HIINNNINMINInas NI

'. When the base response is represented

by the Pasternak model, Equation 2,

Figure 2

Equation 3 becomes
D V“w -G V2w + kw = q (4)
L _ 3 2
where D = Eh7/(12(1 - v©)]

< This differential equation is identical to the response equation of a plate on

- a Winkler foundation that is stretched by a uniform force field N = G .

Purpose and Scope

- 5. In the following parts, solutions for plate problems governed by

.' Equations 2 and 4 will be presented. Emphasis is placed on problems that
occur in the design of hydrotechnical structures, beginning with a brief dis-
- cussion of the analytical features of the Pasternak foundation model. These

features will be needed for the solution of some of the plate problems.
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PART II: ANALYTICAL FEATURES OF THE PASTERNAK FOUNDATION MODEL

Line Load

6. When p(x,y) repre-

sents a line load P along the

y-axis, as shown in Figure 3,

w = w(x) and Equation 2 reduces

to
2
d—‘z’ - a®w =0 (5)
dx
where
Figure 3 a2 - g (6)

its solution is, noting the regularity conditions for w(x) as x » t» |

w(x) = g% e-a|x| -® < x < 4o @)

Thus, the Green's function for any position £ of the line load P is

K(x;€) = (:]zl—k e-a|x-§l (8)

Note that the obtained deflection of the foundation surface is nonoscillatory.
The line load P causes a dis-

continuity in the slope of the

shear layer, dw/dx , along P,

O Fassesiisisassessna
g%i"l""% as shown in Figure 4. This phe-

nomenon, which does not occur in
the classical plate bending the-
Figure 4 ory, will be of importance when
considering plates with free

edges.

Distributed Load

7. Superposition can be used to obtain deflections of the foundation

t
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surface that are caused by a dis-
tributed load p(x) . Setting
P = p(£)Af and integrating over

the loaded interval, as shown in

Figure 5, we obtain

+b
wx) = 3¢ f &) < Eag o)
-a

Arbitrary Load

8. For an arbitrary load

distribution on the foundation

surface, the necessary Green's

function is obtained from the

solution of a concentrated
force P acting at the origin
of the coordinate system (Fig-

ure 6). Because of the ex-

pected rotational symmetry

w = w(r) , Equation 2 reduces

to Figure 6
2 d2w dw 22
rr — +r —-odrw=290 (10)
2 dr
dr
9. The general solution of Equation 10 is
= + 11
w(r) AlKo(ar) Azlo(ar) (11) R
._.4
where Ko and Io are modified Bessel functions. Noting the regularity i!
conditions at r > ® , and the vertical equilibrium at P , we obtain ;j
.j
P ey
= — > 12 =0
w(r) InG Ko (ar) r>o (12) >
c
»
Thus, the Green's function for the three-dimensional foundation is "
6 ;%
®
L . . o . L L .
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K(x,y3€,1) = 0= K (aR)  (13) ]

where, as shown in Figure 6,

o

10. For a distributed

R= - 02 v - m? (o J
1
4

load p(x,y) over an area A , .

shown in Figure 7, the deflec-

tion of the foundation surface

at a point (x,y) is

wix,y) = ﬁ& fA/p(ﬁyn) Ko (oR) d€ dn (15)
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PART I11: PLATES AND STRIPS

Long "Rigid" Plate Strip; Symmetrically Loaded

11. The load on the plate strip consists of the uniform distribution
q, (for example, own weight and

weight of water above it) and two

m
't

line loads F along the edges

(representing the weight of
walls), as shown in Figure 8.
12. Because of the symmetry o
of the load we assume that the ll;l r7 I
BN

strip is subjected to a central

line load %%} =
P = q, 2L + 2F (16) l‘ = —4

per unit length of strip axis, as

shown in Figure 9.
13. The deformed state of the foundation is shown in Figure 9. Under

the strip, -L <& <L,

woE W= constant (17)

Outside the strip the T LITITITL

>
unloaded foundation is TIIITTITT T TS TSI ST

governed by the differ- Fﬁ_i_—4*ﬁ;4 .14

ential equation 2L

-G w + kw =0 0 < x < (18) Figure 9
and the boundary conditions

w(0) = w
s

lim{
X >00

w} > finite (19)

- . R . o . et SN \ﬂ
o P PP Dok F PP PO SIP Uy S LY : P ISV Y [ PR TNPARN WY Y PR N




P I p———— Fau aanc ool unaiy .FA. Fadaa anllie* iy P e

41. The contact forces at the plate-foundation interface (x ; 0) con- 1
sist of the distributed pressure .
R _ _ 1
p(x) = sz(x) Gw2 (x)
2 2 2 2.2 2 -Kx (84)
cq |y -6 £k cos px v [ - p™)/p - (¥ + %) /(pa®)] sin pxle
o D 2

(K2 + pz) + (K2 + p2 + 2ka) G/D

=}

nA
x

nA
8

and the line reaction force along the free edge (x = 0)

R c[w‘l () - w (0)]

9 (2 + g2 + 2ka) G/D
— 1 - (85)
o 2 2.2 2

(k™ + p7) + (k

+ p2 + 2ka) G/D

The bending moments in the plate are

2
" % K2 + 92 sin px e KX
M (x) = -Dw (x) =— (86)

[/ . 2
« p[(ﬁé + pé> + <K2 + p2 + 2Ka> G/D]

My(x) =V Mx(x) (86')

42. The distribution of the

reaction forces and bending moments

is shown, schematically, in Figure 24.

43. Note, that if base is

modeled as a Winkler foundation the

corresponding results are:

R
wix) = K = constant
p(x) = q, = constant
M (x) =0 ; My(X) =0 Figure 24

22
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wl(x) = Ale-ax + Azele -0 < x <0 .
_ =KX . KX . o
wz(x) = e (A3 cos px + AA sin px) + e (A5 cos px + A6 sin px) + K (78)
0sx g,
where, according to Equation 66,
K k G
= _— + —
p} 4D T 4D (79)
Because of the regularity conditions in Equation 77
A1 = A5 = A6 =0 (80)
It then follows from the conditions in Equation 76 that
q N
= 0
Ay =837k
q
~2Kd Eg g
Ay = 3 (81)
2 + p2) + & (% + p? + 2ka) \
D
q
-(x? - p%) @ o g
A =
4 2 2 G
pl(p™ + k) + 5 (k™ + p” + 2ka)
S
thus,
q 82
v (x) = 22 [q - 96 2K 0% (82)
! k D 2 22 2. 2
(k" + p°) + (k" + p” + 2ka) G/D
_meS()»
=K
_ % oG {2k cos px + [(K2 - pz)/p] sin pxle *
wz(X) % 1 - D 7 (83)

2 2

(k™ + p7) + (K2

+ p2 + 2ka) G/D
0 <x <+

21
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Semi-infinite Plate Subjected to a Uniform Load

38. Consider the semi-

infinite plate problem shown

in Figure 23. Of special in-
terest is the distribution of
the contact pressure and the
plate bending moment in the
vicinity of the free edge (for

example, along the free edge of

a highway or airport pavement).
39. The formulation of Figure 23
this problem consists, noting

that w = w(x) , of the differential equations

-Gw'l'+kw=0 -

<
1 $£x20 (75)
v i -
Dwzv G v, + k v, =q, 0 <x<®
the boundary conditions
w (0) = w,(0) )
w;(o) =0 (76)
1 ! i -
Dw)' (0) + G[wl(o) w2(0)] =0
and the regularity conditions
lim{wl} » finite
X>-® (77)
lim{wz} + finite
X

40. The general solution is

20
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35. When the plate is
subjected to a distributed load

q(x) , as shown in Figure 21,

the deflection may be obtained

using superposition. Namely,

qfx) R
b
w(x) = [ q(E)K(x;£)dE (72)
- a
- ":
77/, 7
,C‘/// TT77T 7777777777 where
Figure 21
K(x;€) = ——ln:: e X x-§' p cos(p|x - §|) + K sin (p[x - £1) (73)
4KkpykD

The corresponding contact pressure distribution and the plate bending moment

are obtained from Equations 70 and 71.

Infinite Plate Subjected to a Uniform Load

36. Consider an infinite plate
‘J I 1 l I I 1 1 ‘l* of constant thickness subjected to

a uniformly distributed load,

q = constant , as shown in Fig-
//,qo=co~sr4~r o

T T ure 22. The governing equation
£33 F3
-y

LIS T 7T 7777777777777 777

-
-

vy
Yy

DV“w - GV2w + kw = q, (4 bis)

Figure 22 is valid over the entire x,y domain.

37. The problem suggests that w = constant throughout. Thus,
w = qo/k (74)

Note that in this case the shearing layer has no effect on the solution. The
contact pressure at the interface of plate and foundation is p = q, - The

bending moment in the plate, due to 9, » is equal zero throughout the plate.

19
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2
- G G _ _k
mo2,3,4> V2% w? <;D> ) (65)

Noting that (G/4D)2 - k/4D = (G/4D - Jk/4D) (G/4D + Jk/4D) we distinguish
<

three cases when G 3 2 JkD . For plates resting on a soil foundation the case

G < 2 JkD is usually of interest. For this case

.“._'.
3
1
+

1,2,3,4 - *(k £ ip) (65") ]
where i
.Y
K _\
; . | [x,
' - 4D T 4D (66) &
| p
3
e

and the general solution is

wix) = e X (A1 cos px + A2 sin px) + k¥ (A3 cos px + A4 sin px) (67)

B0 TARAS

33. Because of the regularity condition, Equation 62, it follows that

I A3 =A,=0 (68)

L

Determining A1 and A2 from the boundary conditions in Equation 61 and sub-
stituting them into w(x) , we obtain the plate deflection

l P -K

w(x) = ——— e X (p cos px + K sin px) (69)
4kp JkD

5. § SO

for x

v
o
o

- 34. The contact pressure between plate and foundation is obtained as

p(x) = kw(x) = ¢ ¥ (70)

The corresponding bending moment distribution in the plate is

d2w
M(x) = -D — (71)

3
dx i

N

18 ]
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w(r,08) = wo W cos © (59)
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The procedure for determination of the contact reactions is similar to the

one used in the previous section.

Infinite Plate Subjected to a Line Load

k - -
- S
- -

:/777 SIS
1%

31. The problem shown
in Figure 20 is symmetrical.
Thus, the formulation consists
of the differential equation
for w(x)

(A4

Dw - Gw!''+kw=0 (60)

in 0 < x £ ® |

the boundary conditions

Figure 20
W@ =0
(61)
1" - _2
v (0 =12p
and the regularity condition
lim{w,w'} » finite (62)

X->0o

32. The solution of Equation 60

w(x)
Substituting this into Equation 60, it
4 2

The four roots of this equation are

I I N L
......

. . . . “. e, .- -
e et B . B
IS ¢ ala Al s t.Ir S AL T L . A

is in the form
= Ae™ (63)

follows that m has to satisfy

(=1[~]
+
o=
1
(=]

(64)

17
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where

2 2
v .12 1 (52)
or r Or r- 96
the boundary condition
w(a,d) = W cos 0 (53)
and the regularity condition
lim{w} > finite (54)
>0

29. Noting Equation 53, the solution is assumed to be of the form

w(r,8) = W(r) cos 6 (55)

Substituting it into the differential Equation 51, it follows that this equa-

tion will be satisfied when W is a solution of

2

r2 dw +r aw _ (1 + azrz) W=20 (56)
2 dr
dr
in a {r { e« . Setting or = p the above equation becomes
2 dzw dw 2
P +tp— - (1 +p)wWw=0 (57)
dpz dp

o This is a Bessel equation. 1Its solution is

' W(r) = Al Il(ar) + AzKl(ar) (58)
o

b;ﬁ where I1 and K1 are modified Bessel functions of order one.

b 30. For large r values, I ~ e"F/J2nar . Therefore, according to

VoS

b Equation 54, Al = 0 . Boundary condition Equation 53 yields A2 = wo/Kl(aa)
W Thus,

::;::,-

vt 16

v

LS

L

o

[




and
ﬁ - (l + aL)M 5 i} (49)
2L[1 + alL + (aL) /3]
where M = Pe . Thus, the rotation of the strip and the contact reactions are

expressed in terms of the moment M and the strip and base parameters.

Circular "Rigid" Plate; Eccentrically Loaded

27. The plate problem for e p

consideration is illustrated in

Figure 18. It is assumed that

‘k

the eccentricity is sufficiently
small so that there will be no
separation between the plate and

base. Because the resulting for-

mulation is linear the solution

consists of two parts, as shown in

Figure 18

Figure 14. Since specifics of the
centrally loaded plate were pre-
sented previously, the solution for the plate subjected to a moment M = Pe
is detailed below.

28. Considering the de-
formed state shown in Figure 19, .
from the shaded triangle it
follows that

i ,/,,"" ji
l,ﬁh" I l

= 0 \
w(r,0) w, cos 0 (50) 'M"MMH

for 0 < r < a and 0 < 3] < 2n .

The unloaded base region is

Figure 19

<rge

governed by the differential
equation
-G V2w + kw =0 a (51)
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where

=3
n
Q=

(44)

24. The contact pressure under the strip is

-~

2
d W
p(§) =kw_-G =w k E/L (45)
s 2 o
dg
Considering the vertical equilibrium of the .
R Tl
shearing layer in the vicinity of £ = L , as -
shown in Figure 16, it follows that the line :f:
reactions along the free edges are VAL-HI lVd°+9 :tj

"~

i N
R = G[w;(L) - w'(O)] 5y
or , I ami] ?i
R=6 wo(1 + aL)/L (46) Figure 16 iii
R
25. In order to express v, in terms of M , we consider the moment j%é
equilibrium (per unit length of strip axis), as shown in Figure 17. It is ﬁx
=
_ _ L
M-2RL -2 [ p(&) £dE =0
o
Noting Equations 45 and 46 and performing the
indicated integration, we obtain -
Figure 17 :ﬁ
w o= H (47) :E

° 2G[1 + oL + (aL)2/3]

26. Substitution of the above expression into Equations 45 and 46 yields

oH £
P(g) = 2 ] L (48)
2[1 + oL + (al) /3]

14




3 o/ a ™ ada Vo A et “ R e Sy A™ o o0 “aiii i e N ©a -SSR i SRR i e -Saeh ~ el e et - i aodr-atuils ~ pOAlS gt st Mt - adis et mili i S b E i - ~ e =R S i Pl
N

i

|

|
e
I of

|

|

Il

|

|
.

|

|

I

+

—
9
E

~L ~L l t | e

Figure 14

It is assumed that the eccentrically loaded strip stays in contact with the

base. Thus, there is no partial lift-off from the base. Since the solution

for the centrally loaded strip has been presented, only the solution for the i

)

line moment M will be dealt with in the following text.
22. Consider a very

long strip subjected to a

Al

line momemt M . The corre-
sponding deformed state is
shown in Figure 15. Because

of the anticipated asymme-

.| AR

trical deformations only the

right half will be analyzed.

23. Under the strip,

Figure 15

the deflections are

1. ] RN

. (&) = v % (40)

The deflections outside the strip are governed by the boundary value problem

d2w
-G — + kw = 0 0<x <o (41)
2 =% =
dx
\
é;; w(0) = v,
" (42)
S lim {w} > finite q
_‘."' x>0
®
[ . The solution is J
h.':‘
t
;": w(x) = w e-ax 0 <x <> (43)
= J =" =
k-
A
[
.
o
[ 13
-
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w = P (36)

S na[? YkG Kl (ora)/Ko (aa) + k%]

Thus, in terms of P , the uniform pressure is

P
P=— (37)
na ‘2 K1 (va)/[aa Ko(aa)] + l]
and the line reaction becomes
= P
= (38)
nal2 + aa Ko ((!la)/l(1 (Ola)]
where 02 = k/G and Ko and K1 are modified Bessel functions.
Long "Rigid" Strip; Eccentrically Loaded
20. The load on the
rigid strip consists of a
uniform distribution q,
(own weight and weight of
water) and two unequal
line loads F1 and F2 v e,
along the edges (weight !
of walls), as shown in lll]411
Figure 13. Thus, the A
rigid strip may be con- (/A

sidered as being subjected

to an eccentrically located

line load ,}5/ 441 L /9

per unit length of strip Figure 13
axis, as shown in Figure 14.

21. Because of the linearity of the formulation, the answer for the
eccentrically loaded strip consists of the combined solution due to a central

load P and a line moment M = ie as shown, schematically, in Figure 14.

12
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lim
X->0o

{w,w'} » finite (29)

18. The general solution of Equation 10 is
w(r) = AIKO(ar) + AZIO(ar) (11 bis)

because of the regularity condition (Equation 29), A2 = 0 . Substituting the

above expression into the boundary condition (Equation 28), we obtain

A, = v /Ko(aa) .  Thus,

1
Ko(dr)
= — <r <
w(r) VoK (aa) afrgo (30)
o

The expression for the contact pressure is
p(r) = k w_ = constant 0<r<a (31)
since under the rigid plate dw/dr = 0 . Because of the radial slope discon-

tinuity in the shearing layer across r = a , there appears to be a concen-
trated line reaction force R along the free edge of plate. Considering the

vertical equilibrium of the shearing layer in the vicinity of R we obtain

= dw
R = -G dr _ (32)
r=a
Noting that
dKo(ar)
ar = -aKl(ar) (33)
it follows that
_ Kl(ua)
R = ws\’kG i;?a;j (34)
19. The relation between wS and P is obtained from the vertical
equilibrium of the circular plate. It is
P - 2nmaR - na’k W, =0 (35)

Solving it for L and noting Equation 34, we obtain

11

e R

DR . |
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and the concentrated reactions along the free edges are

R= VG w = 1 3 (26)

S 201 +\/k/c L)

Note that L.e concentrated reactions R in Figure 10 represent in an actual

PY W PO T S W 1

e X

continuum base a strong increase of the reaction pressure at the free ends, as

shown by the dashed line.

"Rigid" Circular Plate; Centrally Loaded

16. The next consideration is a "rigid" circular plate being subjected
to a central load P , as shown
in Figure 11. P

17. The deformed state

and the notation used are shown

in Figure 12. Under the plate, (]
0<¢r<a,

wEwS constant (27)

Since the problem is rotationally

symmetrical, outside the plate Figure 11
region the unloaded foundation
is governed by the differential

equation

- dzr w =20 (10 bis)

i
f% —

in a < r £ ®» , the boundary N

condition R Nop R

w(a) = g (28) | a |

and the regularity condition Figure 12

10
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Because of symmetry, it is sufficient to consider only uvne side. The solution
for the above boundary value problem is

ox

w(x) = wse- (20)

o

1A
L

HA
8

14. For design purposes, the pressure distribution under the strip is

of interest. Since w(§) = constant , it follows that dzw/dg2 = 0 and thus

ol

p(E) = k w, = constant (21)
> in -L < £ < L . Because of the slope
N o ik el 5 discontinuity along the free edges of the
R 3 \|
/ 1 strip, at § = tL , there occur concen-
£ L trated reaction forces R , 8s shown in
Figure 10 Figure 10.

15. Considering the vertical

equilibrium of the shearing layer in the vicinity of R , we obtain

R = -G w' (0) (22)
, -ax ,
Noting that w(x) = w e , it follows that
R = VkG W (23)

The relation between v and P is obtained by considering the vertical
equilibrium of the strip (Figure 10) per unit length of strip axis. It is
P-2R -k v 2L = 0 . Noting Equation 23, it yields

w = —Ft (24)
S 2 (ch + kL)
Thus, in terms of P , the reaction pressure in -L < § < L is
P(€) = k w, = (25)

2 (et + 1) |
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Long Strip Subjected to a Uniform Load and Boundary Forces

44. In designing dock

structures and navigation locks,

structures as shown in Figure 25

are encountered.

45. One approach for

analyzing structures of this

type is to estimate the largest

pressures that can be expected

Figure 25

on the finished walls, subject
the structures to a variety of these anticipated loads, then analyze.

46. In the past, the Winkler foundation was used to represent the re-
sponse of the base. A major shortcoming of this model is that it does not
correctly represent the vertical pressures near the edges (E) and (:), thus,
the resulting bending moments in the floor plate may strongly deviate from
the actual ones.

47. To eliminate part of this shortcoming, it is suggested that the
Pasternak foundation be used rather than the Winkler. The corresponding model

of the structure to be analyzed is shown in Figure 26.

48. Since the pressures

and the wall weights are as-
AV, sumed to be known, the problem
-\ P reduces to the analysis of the

éf:i\ % 7 structure shown in Figure 27.
A A e P Note that the problem is simi-

L1 )|
EF TR I EIEL T e
- 5 lar to the one shown in Fig-

ure 8, except that in Fig-

Figure 26
ure 27, the floor plate is
flexible.
49. Noting that w, = wl(x) and w, = wz(g) , and utilizing symmetry,

we can formulate this problem by use of the differential equations
v "
- +
le Gw1 kwl o

-Gw;+kw2 0 0

L

n
Vel
(=]
A
*
HAa

(87)

A

e
A
8

23
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the boundary conditions 1
4
w'l 0) =0 w'l"(O) =0 (88) —
Wy (L) = w,y(0) R
Dw)(L) = M (89) s
8 -Dw)' (L) + G[w'l(L) - w'Z(O)] =F -.-;'1
: -4
b /7 B
- and the regularity conditions
-—D. -
-
kz lim {wz,wé} » finite (90) .y
- K00 o
a -
#.. -Q.'
a -
{ L -9,
3 The general solution is e
.-~ -
3 wi (x) = A cos px cosh kx + A, cos px sinh kx s
: qo -’;‘—-
r. + A3 sin px cosh kx + A4 sin px sinh kx + "N (91) '
] 5
24
|
n




where

1]
>
4]
=3
yn

wy(x) = Ag age ¢ (92) g

+
U
a= ,/% (91") !
50 = Vst S (92")

and

for G < 2 JkD .
50. Note that in the above formulation the axial compression forces Nx

in the floor plate are neglected in the determination of p(x) and M(x)

They may be easily included, however, by replacing G by (G - Nx) in the
first equation of Equation 87 and in Equation 92', and by the corresponding
modification of the third equation in Equation 89.

51. From the boundary conditions in Equation 88 it follows that

2 3

A5 =

three boundary conditions in Equation 89. -

4
g
K

A, =A, =0 . From the regularity condition, Equation 90, it follows that
0

The remaining three constants Al’ Al.’ A6 are determined from the

v

52. The corresponding pressure distribution is

1%

" X
1 1
=q * k [(Al cos px cosh kx) + (A4 sin px sinh Kx)] '

p(x) = kwl - Gw

-G [(K2 - p2) A1 + 2Kkp Az,] cos px cosh Kx

-G I:(K2 - p2) A(. - 2Kkp Al] sin px sinh Kkx (93)
The reactions along the edges are
R=6G [w'l(L) - wé(o)]= G [(KAA - pAl) sin pL cosh KL ?
+ (pA, + KA)) cos pL sinh KL + A6g] (94) ¢
and the bending moments in the floor plate are J‘
]
M(x) = -DW) (x) ]
o 2 2 .
o = -D{[(K - p7) A1 + 2kp Aé] cos px cosh Kx ‘
N
o 2 _ 2 . . . ]
‘i + [(K ) A6 2pK Al] sin px sinh KX} (95) P
% 2
.
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Other Related Problems

53. A number of related problems not discussed in this report are
described by Selvadurai.3

26
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